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Abstract This article studies a numerical solution method for a special class of continuous
time linear programming problems denoted by (S P). We will present an efficient method for
finding numerical solutions of (SP). The presented method is a discrete approximation algo-
rithm, however, the main work of computing a numerical solution in our method is only to
solve finite linear programming problems by using recurrence relations. By our constructive
manner, we provide a computational procedure which would yield an error bound intro-
duced by the numerical approximation. We also demonstrate that the searched approximate
solutions weakly converge to an optimal solution. Some numerical examples are given to
illustrate the provided procedure.

Keywords Continuous time linear programming problems · Infinite-dimensional linear
programming problems

1 Introduction

Let T > 0 and q ∈ N, and let L∞+ [0, T ] be the set of nonnegative real-valued, Lebesgue
measurable, essentially bounded functions on the closed interval [0, T ]. We consider an
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infinite-dimensional linear programming problem denoted by (SP) and defined as follows:

(S P) : maximize
q∑

j=1

T∫

0

f j (t)x j (t)dt

subject to
q∑

j=1

⎡

⎣β j x j (t)−
t∫

0

γ j x j (s)ds

⎤

⎦ ≤ g(t), ∀ t ∈ [0, T ] (1)

x j (t) ∈ L∞+ [0, T ], for 1 ≤ j ≤ q,

where β j and γ j are given constants, f j (t) : [0, T ] → R and g(t) : [0, T ] → R are given
functions. x j (·) : [0, T ] �→ R (1 ≤ j ≤ q) is a decision variable. It is well known (refer to
[3]) that the dual problem (DS P) of (S P) is defined as follows:

(DS P) : minimize

T∫

0

g(t)w(t)dt

subject to β j w(t)−
T∫

t

γ j w(s)ds ≥ f j (t), (2)

∀ 1 ≤ j ≤ q, t ∈ [0, T ],
w(t) ∈ L∞+ [0, T ],

where w(·) : [0, T ] �→ R is the decision variable.
(SP) is a special case of the so called continuous time linear programming problems

(C L P), first introduced by Bellman [6] to model some production planning problems. The
model of (C L P) has a wide range of applications (e.g., [6,8,21]), but is notoriously difficult
to solve in general. In the literature, many researches have been proposed to consider (C L P).
Studying the duality of (C L P), Grinold [12,13], Levinson [17] and Tyndall [22,23] have
established strong duality theorems. Investigating a solution algorithm for (C L P), Anstrei-
cher [5], Drews [9], Hartberger [14], Lehman [16], Perold [18] and Segers [20] have attempted
to extend the simplex method to (C L P), however, the emerged theory is highly complex,
and there remain substantial difficulties that make an implementation of the method unlikely
to be successful. Studying a special case of (C L P), Anderson [1] introduced the separated
continuous linear programs (SC L P) to model job-shop scheduling problems. Since then
many researches concerned with (C L P) have focused on (SC L P) [2,4,10,19,24]. On the
other hand, Buie and Abrham [7] proposed a discrete approximation method for finding
numerical solutions of (C L P). As a solution technique, however, the provided method in [7]
has some drawbacks. For instance, the searched numerical solutions may not be feasible; one
cannot know how accurate the searched solution is; the termination criterion is not provided.
Therefore, it would be useful to have a computational procedure which would yield bounds
on the error introduced by the numerical approximation.

In this paper, we propose an efficient approximation method to approach the optimal value
of (SP) by using recurrence relations. This method can be employed not only to easily solve
(SP), but also to provide an error bound of the optimal value as well. Moreover, we also
prove that our searched approximate solutions can converge weakly to an optimal solution
of (SP).

For improving the readability, we define the notations F(P) and V (P) to be the feasible
set and the optimal value of a linear programming problem (P), respectively. If S1, S2 ⊆ R,
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then we denote by C(S1, S2) the space of all continuous functions from S1 to S2. And the
superscript “ 	” denotes the transpose operation.

This paper is organized as follows. In Sect. 2, we develop a recurrence method for solv-
ing discretization problems (Pn) and (Dn) of (SP) and (DSP), respectively. In Sect. 3, we
provide methods to construct approximate solutions for (SP) and (DSP). Moreover, we also
establish an estimation for the error bounds of approximate values evaluated by the proposed
method. In Sect. 4, we demonstrate that the searched approximate solutions weakly converge
to an optimal solution. Finally, in Sect. 5, we provide some numerical examples to show the
quality of the proposed error bound.

2 A recurrence method for solving discretization problems (Pn) and (Dn)

In the sequel of this paper we will make the following assumptions:

Assumption
(A1) f j (t) ∈ C([0, T ], R) for all 1 ≤ j ≤ q and g ∈ C([0, T ], R

+), where R
+ is the set

of all nonnegative real numbers.
(A2) β j > 0 and γ j ≥ 0 for all 1 ≤ j ≤ q .

To solve (SP) and (DSP), for each n ∈ N, we let P2n = {0, 1
2n T, 2

2n T, . . . , 2n−1
2n T, T } be

a partition on [0, T ] into 2n subintervals with equal length T
2n . For 1 ≤ l ≤ 2n , let

b(n)

l = min

{
g(t) : t ∈

[
l − 1

2n
T,

l

2n
T

]}
(3)

and

c(n)

jl = min

{
f j (t) : t ∈

[
l − 1

2n
T,

l

2n
T

]}
, (4)

for 1 ≤ j ≤ q . We define step functions g(n)(t) and f (n)
j (t) as follows:

g(n)(t) =
{

b(n)

l , if t ∈ [ l−1
2n T, l

2n T
)
,

b(n)

2n , if t = T
(5)

and

f (n)
j (t) =

{
c(n)

jl , if t ∈ [ l−1
2n T, l

2n T
)
,

c(n)

j2n , if t = T ,
(6)

where 1 ≤ l ≤ 2n . Consider the following programming problem:

(S Pn) : maximize
q∑

j=1

T∫

0

f (n)
j (t)x j (t)dt

subject to
q∑

j=1

⎡

⎣β j x j (t)−
t∫

0

γ j x j (s)ds

⎤

⎦ ≤ g(n)(t),∀ t ∈ [0, T ],

x j (t) ∈ L∞+ [0, T ], for 1 ≤ j ≤ q.
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And its dual problem is defined as follows:

(DS Pn) : minimize

T∫

0

g(n)(t)w(t)dt

subject to β j w(t)−
T∫

t

γ j w(s)ds ≥ f (n)
j (t),

∀ 1 ≤ j ≤ q, t ∈ [0, T ], and

w(t) ∈ L∞+ [0, T ].

Remark 1

(1a) Under assumption (A1), (SP) and (S Pn) are feasible for all n ∈ N. Indeed, the zero
vector functions is a common feasible solution of (SP) and (S Pn).

(1b) Under assumptions (A1) and (A2), (DSP) and (DS Pn) are feasible for all n ∈ N. To
see this, we choose α > 0 such that αβ j ≥ γ j and αβ j ≥ maxt∈[0,T ]{ f j (t)} for all
1 ≤ j ≤ q . Define w̃(t) = αeα(T−t), then w̃(t) ≥ 0. Besides, for 1 ≤ j ≤ q and
t ∈ [0, T ], we have

β j w̃(t)−
T∫

t

γ j w̃(s)ds

= β jαeα(T−t) − γ j

T∫

t

αeα(T−s)ds

= β jαeα(T−t) + γ j − γ j e
α(T−t)

= [αβ j − γ j
]

eα(T−t) + γ j

≥ αβ j − γ j + γ j

= αβ j

≥ f j (t)

≥ f (n)
j (t),

for all n ∈ N. Hence (SP) and (DS Pn) are feasible for all n ∈ N.
(1c) It is well known (refer to [3]) that (SP) and (S Pn) have the weak duality property, that

is, V (S P) ≤ V (DS P) and V (S Pn) ≤ V (DS Pn). Moreover, the strong duality for
(SP) will be demonstrated by our constructive method, although the strong duality for
general problem (C L P) has been established by Tyndall [22]. It is remarkable that
the strong duality theorem has been extended to different versions by Grinold [12,13],
Levinson [17] and Tyndall [23].

(1d) Because

g(1)(t) ≤ g(2)(t) ≤ · · · ≤ g(n)(t) ≤ · · · ≤ g(t),

and

f (1)
j (t) ≤ f (2)

j (t) ≤ · · · ≤ f (n)
j (t) ≤ · · · ≤ f j (t),
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for all 1 ≤ j ≤ q and t ∈ [0, T ], we have

F(S P1) ⊆ F(S P2) ⊆ · · · ⊆ F(S P),

and

F(DS P1) ⊇ F(DS P2) ⊇ · · · ⊇ F(DS P),

which implies

−∞ < V (S P1) ≤ V (S P2) ≤ · · · ≤ V (S P) <∞ (7)

and

−∞ < V (DS P1) ≤ V (DS P2) ≤ · · · ≤ V (DS P) <∞.

Hence

lim
n→∞ V (S Pn) ≤ V (S P)

and

lim
n→∞(DS Pn) ≤ V (DS P). (8)

Now we consider the finite dimensional linear programming problem which is due to
(S Pn). For each n ∈ N, let b(n)

l and c(n)
jl be defined as in (3) and (4). We define the following

linear programming problem and use the convention that “empty sum,”
∑0

1 has the value
zero.

(Pn) : maximize
q∑

j=1

2n∑

l=1

T

2n
c(n)

jl x jl

subject to
q∑

j=1

[
β j x jl − T

2n
γ j

l−1∑

α=1

x jα

]
≤ b(n)

l , l = 1, 2, . . . , 2n,

x jl ≥ 0, j = 1, 2, . . . , q, l = 1, 2, . . . , 2n .

The dual problem (Dn) of (Pn) is defined as follows:

(Dn) : minimize
2n∑

l=1

T

2n
b(n)

l wl

subject to β jwl − T

2n
γ j

2n∑

α=l+1

wα ≥ c(n)
jl , j = 1, 2, . . . , q, l = 1, 2, . . . , 2n,

wl ≥ 0, l = 1, 2, . . . , 2n,

where “empty sum,”
∑2n

2n+1 has the value zero.

Remark 2
(2a) Under assumptions (A1) and (A2), the feasible set F(Pn) is nonempty for all n ∈ N,

since the zero vector is a feasible solution of (Pn).
(2b) Under assumptions (A1) and (A2), for all n ∈ N, the feasible set F(Dn) is nonempty

by the following Theorem 1.
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(2c) By (2a),(2b) and the strong duality theorem of finite linear programming, under
assumptions (A1) and (A2), both (Pn) and (Dn) have optimal solutions and −∞ <

V (Pn) = V (Dn) <∞.

The following results provide a recurrence method for solving (Pn) and (Dn). Let

L := max
1≤ j≤q

max
0≤t≤T

{ f j (t), 0},
σ := min

1≤ j≤q
{β j }

and

γ̄ := max
1≤ j≤q

{γ j }.

Theorem 1 Suppose that assumptions (A1) and (A2) hold. Let the vector w̄(n) =
(w̄

(n)
1 , . . . , w̄

(n)
2n )	 be defined by

w̄
(n)
2n := max

1≤ j≤q

{
max

{
c(n)

j2n

β j
, 0

}}
,

and

w̄
(n)
l := max

1≤ j≤q

{
max

{
c(n)

jl + T
2n γ j

∑2n

α=l+1 w̄
(n)
α

β j
, 0

}}
,

for l = 2n − 1, 2n − 2, . . . , 2, 1. Then

(i) w̄(n) is an optimal solution of (Dn).
(ii) For 1 ≤ l ≤ 2n

0 ≤ w̄
(n)
l ≤

L

σ

(
1+ T γ̄

2nσ

)2n−l

≤ L

σ

(
1+ T γ̄

2nσ

)2n

≤ L

σ
e

T γ̄
σ . (9)

Proof It is easy to check that w̄(n) is feasible for (Dn). Now we claim that if w(n) =
(w

(n)
1 , . . . , w

(n)
2n )	 ∈ F(Dn) then w

(n)
l ≥ w̄

(n)
l for all 1 ≤ l ≤ 2n . We prove it by induc-

tion. Obviously, w
(n)
2n ≥ w̄

(n)
2n for all w(n) ∈ F(Dn). Suppose that w

(n)
l ≥ w̄

(n)
l for all l =

k + 1, k + 2, . . . , 2n . We will show that w
(n)
k ≥ w̄

(n)
k . Since w(n) ∈ F(Dn), β jw

(n)
k −

T
2n γ j

∑2n

α=k+1 w
(n)
α ≥ c(n)

jk . This implies

w
(n)
k ≥

c(n)
jk + T

2n γ j
∑2n

α=k+1 w
(n)
α

β j
,

for all j . Hence

w
(n)
k ≥ max

1≤ j≤q

{
max

{
c(n)

jk + T
2n γ j

∑2n

α=k+1 w̄
(n)
α

β j
, 0

}}
= w̄

(n)
k .

By induction on k, we show that our claim is valid. In view of (A1) and the fact that b(n)
l ≥ 0 for

all l, we obtain that
∑2n

l=1
T
2n b(n)

l w
(n)
l ≥

∑2n

l=1
T
2n b(n)

l w̄
(n)
l . Since w(n) ∈ F(Dn) is arbitrary,

we see that w̄(n) is an optimal solution of (Dn).
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On the other hand, we assert that

w̄
(n)
l ≤

L

σ

(
1+ T γ̄

2nσ

)2n−l

,

for all 1 ≤ l ≤ 2n . It is obvious that

w̄
(n)
2n = max

1≤ j≤q

{
max

{
c(n)

j2n

β j
, 0

}}
≤ L

σ

and

w̄
(n)
2n−1 ≤

L + T γ̄ L
2nσ

σ
= L

σ

(
1+ T γ̄

2nσ

)
.

Suppose that w̄
(n)
k ≤ L

σ

(
1+ T γ̄

2nσ

)2n−k
for all k = l + 1, . . . , 2n . Then

w̄
(n)
l = max

1≤ j≤q

{
max

{
c(n)

jl + T
2n γ j

∑2n

α=l+1 w̄
(n)
α

β j
, 0

}}

≤ max
1≤ j≤q

{
c(n)

jl

β j
, 0

}
+ max

1≤ j≤q

{
T
2n γ j

∑2n

α=l+1 w̄
(n)
α

β j

}

≤ L

σ
+ T γ̄

2nσ

2n∑

α=l+1

w̄(n)
α

≤ L

σ
+ L

σ

[(
1+ T γ̄

2nσ

)2n−l

− 1

]

= L

σ

(
1+ T γ̄

2nσ

)2n−l

.

By induction the assertion is valid, and this implies that for all 1 ≤ l ≤ 2n

w̄
(n)
l ≤

L

σ

(
1+ T γ̄

2nσ

)2n−l

≤ L

σ

(
1+ T γ̄

2nσ

)2n

≤ L

σ
e

T γ̄
σ ,

since
(

1+ T γ̄
2nσ

)2n

↑ e
T γ̄
σ as n→∞. We complete this proof. �

By the complementary slackness theorem, it is well known that x (n) ∈ F(Pn) and w(n) ∈
F(Dn) become an optimal solution pair if and only if x (n) and w(n) satisfy the following
equations:

⎛

⎝b(n)
l −

q∑

j=1

[
β j x (n)

jl −
T γ j

2n

l−1∑

α=1

x (n)
jα

]⎞

⎠w
(n)
l = 0, ∀ 1 ≤ l ≤ 2n, (10)

and
⎛

⎝β jw
(n)
l −

T γ j

2n

2n∑

α=l+1

w(n)
α − c(n)

jl

⎞

⎠ x (n)
jl = 0, ∀ 1 ≤ j ≤ q, 1 ≤ l ≤ 2n . (11)
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Let us recall that an optimal solution w̄(n) of (Dn) can be found easily by Theorem 1. Now
we want to construct a feasible solution x̄ (n) of (Pn) which corresponds to the dual optimal
solution w̄(n) by the complementary slackness theorem.

Let

� := { l : 1 ≤ l ≤ 2n and w̄
(n)
l > 0}, (12)

and for 1 ≤ l ≤ 2n , 1 ≤ j ≤ q

d jl :=
c(n)

jl + T
2n γ j

∑2n

α=l+1 w̄
(n)
α

β j
.

For l ∈ �, we let

�(l) := {α : 1 ≤ α ≤ l − 1 and α ∈ �}, (13)

where �(1) = ∅, and

j(l) := argmax j {d jl : d jl > 0}. (14)

(If more than one index j maximize d jl , we let j(l) be the smallest such index.) Construct a
q × 2n matrix

x̄ (n) =
[
x̄ (n)

jl

]

q×2n
,

where

x̄ (n)
jl :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if l /∈ �,
0 if l ∈ � and j �= j(l),
b(n)

l + T
2n
∑

α∈�(l)
γ j(α)

x̄ (n)
j(α)α

β j(l)
if l ∈ � and j = j(l),

(15)

for 1 ≤ j ≤ q and 1 ≤ l ≤ 2n . We first show that x̄ (n) ∈ F(Pn). If l /∈ � then

b(n)
l −

q∑

j=1

[
β j x̄ (n)

jl −
T

2n
γ j

l−1∑

α=1

x̄ (n)
jα

]
= b(n)

l +
l−1∑

α=1

q∑

j=1

T

2n
γ j x̄ (n)

jα ≥ 0.

If l ∈ � then

b(n)
l −

q∑

j=1

[
β j x̄ (n)

jl −
T

2n
γ j

l−1∑

α=1

x̄ (n)
jα

]

= b(n)
l − β j(l) x̄

(n)
j(l)l
+

l−1∑

α=1

q∑

j=1

T

2n
γ j x̄ (n)

jα

= b(n)
l − β j(l) x̄

(n)
j(l)l
+
∑

α∈�(l)

T

2n
γ j(α)

x̄ (n)
j(α)α

= 0. (16)

Hence x̄ (n) ∈ F(Pn). Now we assert that x̄ (n) and w̄(n) satisfy equations (10) and (11). We
verify this assertion by the following two cases.
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Case 1. w̄
(n)
l = 0. Then x̄ (n)

jl = 0 for all j = 1, 2, . . . , q . Hence
⎛

⎝b(n)
l −

q∑

j=1

[
β j x̄ (n)

jl −
T

2n
γ j

l−1∑

α=1

x̄ (n)
jα

]⎞

⎠ w̄
(n)
l = 0,

and
⎛

⎝β j w̄
(n)
l −

T

2n
γ j

2n∑

α=l+1

w̄(n)
α − c(n)

jl

⎞

⎠ x̄ (n)
jl = 0, for all j = 1, 2, . . . , q.

Case 2. w̄
(n)
l > 0. Then

w̄
(n)
l =

c(n)
j(l)l
+ T

2n γ j(l)
∑2n

α=l+1 w̄
(n)
α

β j(l)
,

and hence

β j(l) w̄
(n)
l −

T

2n
γ j(l)

2n∑

α=l+1

w̄(n)
α − c(n)

j(l)l
= 0.

According to x̄ (n)
jl = 0 for all j �= j(l), we have

⎛

⎝β j w̄
(n)
l −

T

2n
γ j

2n∑

α=l+1

w̄(n)
α − c(n)

jl

⎞

⎠ x̄ (n)
jl = 0, ∀ 1 ≤ j ≤ q.

Note that l ∈ �, by (16), we have

b(n)
l −

q∑

j=1

[
β j x̄ (n)

jl −
T

2n
γ j

l−1∑

α=1

x̄ (n)
jα

]
= 0.

Hence equations (10) and (11) hold. By Case 1 and 2, our assertion is valid, and hence
x̄ (n) is an optimal solution of (Pn).

Based on the above discussion, we have an algorithm for solving (Pn) and (Dn).

Algorithm 1 Given n, q ∈ N. Set l = 2n and � = ∅.
Step 1: Set j = 1.

Step 2: Compute d jl := c(n)
jl + T

2n γ j
∑2n

α=l+1 w̄
(n)
α

β j

(∑2n

α=2n+1 w̄
(n)
α := 0

)
.

Step 3: If d jl ≤ 0, set x̄ (n)
jl = 0.

Step 4: If j �= q , update j ← j + 1 and go to Step 2.
Step 5: If d jl ≤ 0 for all j = 1, 2, . . . , q , set w̄

(n)
l = 0.

Otherwise, update �← � ∪ {l} and set w̄
(n)
l = max{d jl : d jl > 0} and x̄ (n)

jl = 0
for all j �= j(l), where j(l) is defined in (14).

Step 6: If l �= 1, update l ← l − 1 and go to Step 1.
Step 7: If l ∈ �, then find x̄ (n)

j(l)l
by solving the following recurrence relation:

x̄ (n)
j(l)l
=

b(n)
l + T

2n

∑
α∈�(l)

γ j(α)
x̄ (n)

j(α)α

β j(l)
,
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where �(l) = {α : 1 ≤ α ≤ l − 1 and α ∈ �} and �(1) = ∅.
Step 8: If l = 2n , then STOP; otherwise update l ← l + 1 and go to Step 7.

Moreover, the feasible set F(Pn) is uniformly bounded. To see this, let

M := max
0≤t≤T

g(t).

Lemma 1 Let x (n) =
(

x (n)
1 , x (n)

2 , . . . , x (n)
2n

)	 ∈ F(Pn),where x (n)
l =

(
x (n)

1l , x (n)
2l , . . . , x (n)

ql

)

and 1 ≤ l ≤ 2n, then

0 ≤ x (n)
jl ≤

M

σ
e

qγ̄ T
σ , (17)

for all 1 ≤ j ≤ q and 1 ≤ l ≤ 2n and n ∈ N.

Proof We claim that x (n)
jl ≤ M

σ

(
1+ q γ̄ T

2nσ

)l−1
for all 1 ≤ j ≤ q and 1 ≤ l ≤ 2n . Since

∑q
j=1 β j x (n)

j1 ≤ b(n)
1 and β j > 0, it follows that

x (n)
j1 ≤

b(n)
1

β j
≤ M

σ

for all j . Suppose that x (n)
jl ≤ M

σ

(
1+ q γ̄ T

2nσ

)l−1
for l = 1, 2, . . . , k − 1. Then

k−1∑

l=1

x (n)
jl ≤

k−1∑

l=1

M

σ

(
1+ qγ̄ T

2nσ

)l−1

=
2n M

[(
1+ q γ̄ T

2nσ

)k−1 − 1

]

qγ̄ T
(18)

for all j . Since
∑q

j=1

[
β j x (n)

jk − T γ j
2n

∑k−1
α=1 x (n)

jα

]
≤ b(n)

k and by (18), we have that

β j x (n)
jk ≤ b(n)

k +
q∑

j=1

T γ j

2n

k−1∑

α=1

x (n)
jα

≤ M + M

[(
1+ qγ̄ T

2nσ

)k−1

− 1

]
.

This implies that x (n)
jk ≤ M

σ

(
1+ q γ̄ T

2nσ

)k−1
. Hence by induction we show that our claim is

valid. Hence x (n)
jl ≤ M

σ

(
1+ q γ̄ T

2nσ

)2n

for all 1 ≤ j ≤ q , 1 ≤ l ≤ 2n and n ∈ N. Since

M
σ

(
1+ q γ̄ T

2nσ

)2n

↑ M
σ

e
qγ̄ T
σ as n→∞, we get

0 ≤ x (n)
jl ≤

M

σ
e

qγ̄ T
σ .

The proof is complete. �
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3 Approximate solutions of (SP) and (DSP)

In one of early papers, Tyndall [22] conjectured that the solutions to continuous time program-
ming problems would be piecewise smooth functions under proper conditions. Jóhannesson
and Hanson [15] confirmed this conjecture. However, it seems that no practical methods have
been provided to find approximate solutions and values. In this section, we provide methods
to construct approximate solutions for (SP) and (DSP) by virtue of the optimal solutions of
(Pn) and (Dn).

Let x̄ (n) be defined in (15). Recall x̄ (n) is an optimal solution of (Pn). Define a step func-
tion x̂ (n)(·) : [0, T ] �→ R

q as follows: x̂ (n)(t) = (x̂ (n)
1 (t), x̂ (n)

2 (t), . . . , x̂ (n)
q (t))	, where for

1 ≤ j ≤ q

x̂ (n)
j (t) =

{
x̄ (n)

jl , if t ∈ [ l−1
2n T, l

2n T ) for some 1 ≤ l ≤ 2n

x̄ (n)
j2n , if t = T .

(19)

Then we have the following result.

Lemma 2 Let x̂ (n)(t) be defined as in (19). Then x̂ (n)(t) ∈ F(S Pn) ⊆ F(S P) for all n ∈ N.

Proof Since x̄ (n) is an optimal solution of (Pn),

q∑

j=1

[
β j x̄ (n)

jl −
T γ j

2n

l−1∑

α=1

x̄ (n)
jα

]
≤ b(n)

l , (20)

for 1 ≤ l ≤ 2n . Consider the following two cases, we have that x̂ (n)(t) ∈ F(S Pn).

Case 1. t ∈ [ l−1
2n T, l

2n T
)
, for some 1 ≤ l ≤ 2n . Then we have

q∑

j=1

⎡

⎣β j x̂ (n)
j (t)−

t∫

0

γ j x̂ (n)
j (s)ds

⎤

⎦

=
q∑

j=1

⎡

⎢⎢⎣β j x̂ (n)
j (t)−

l−1∑

α=1

α
2n T∫

α−1
2n T

γ j x̂ (n)
j (s)ds −

t∫

l−1
2n T

γ j x̂ (n)
j (s)ds

⎤

⎥⎥⎦

≤
q∑

j=1

[
β j x̄ (n)

jl −
T γ j

2n

l−1∑

α=1

x̄ (n)
jα

]
⎛

⎜⎜⎝since

t∫

l−1
2n T

γ j x̂ (n)
j (s)ds ≥ 0

⎞

⎟⎟⎠

≤ b(n)
l (by(20))

= g(n)(t).
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Case 2. t = T . Then we have

q∑

j=1

⎡

⎣β j x̂ (n)
j (T )−

T∫

0

γ j x̂ (n)
j (s)ds

⎤

⎦

=
q∑

j=1

⎡

⎣β j x̄ (n)
j2n −

2n∑

α=1

T γ j

2n
x̄ (n)

jα

⎤

⎦

≤
q∑

j=1

⎡

⎣β j x̄ (n)
j2n − T γ j

2n

2n−1∑

α=1

x̄ (n)
jα

⎤

⎦ (since γ j ≥ 0)

≤ b(n)
2n (by(20))

= g(n)(T ).

We complete this proof. �
Moreover, it is obvious that

q∑

j=1

T∫

0

f (n)
j (t)x̂ (n)

j (t)dt =
q∑

j=1

2n∑

l=1

T

2n
c(n)

jl x̄ (n)
jl = V (Pn). (21)

Therefore, V (S Pn) ≥ V (Pn) and hence V (DS Pn) ≥ V (S Pn) ≥ V (Pn) = V (Dn). Hence,
by inequality (7), one can easily see that

V (DS P) ≥ V (S P) ≥ V (S Pn) ≥ V (Pn) = V (Dn), (22)

for all n ∈ N.
Furthermore, we assert that limn→∞ V (Dn) = V (DS P). To see this, we first need the

following notations and lemma. Let

εn := max
1≤ j≤q

sup
t∈[0,T ]

{ f j (t)− f (n)

j (t)}, (23)

ε̄n := sup
t∈[0,T ]

{g(t)− g(n)(t)} (24)

and

ρ := max
1≤ j≤q

{
γ j

β j
,

1

β j

}
. (25)

Let w̄(n) = (w̄
(n)
1 , w̄

(n)
2 , . . . , w̄

(n)
2n )	 be the optimal solution of (Dn) defined as in Theorem

1. Define a function ŵ(n)(t) : [0, T ] �→ R as follows:

ŵ(n)(t) =
{

w̄
(n)
l + δ2n ρeρ(T−t), if l−1

2n T ≤ t < l
2n T for some 1 ≤ l ≤ 2n,

w̄
(n)
2n + δ2n ρ, if t = T,

(26)

where

δ2n := max
1≤l≤2n

{
T

2n
w̄

(n)
l

}
. (27)

Moreover, define

w̃(n)(t) = ŵ(n)(t)+ εnρeρ(T−t) (28)
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for all t ∈ [0, T ], where εn is defined as in (23). It can be shown by the following lemma that
ŵ(n)(t) and w̃(n)(t) are feasible solutions of (DS Pn) and (DSP), respectively.

Lemma 3 Suppose that assumptions (A1) and (A2) hold. Let ŵ(n)(t) and w̃(n)(t) be defined
as above. Then

(i) ŵ(n)(t) ∈ F(DS Pn) and

0 ≤
T∫

0

g(n)(t)ŵ(n)(t)dt − V (Dn) ≤ δ2n

T∫

0

ρeρ(T−t)g(t)dt. (29)

(ii) w̃(n)(t) ∈ F(DS P) and

0 ≤
T∫

0

g(t)w̃(n)(t)dt −
T∫

0

g(n)(t)ŵ(n)(t)dt ≤ ε̄n

T∫

0

ŵ(n)(t)dt +

εn

T∫

0

ρeρ(T−t)g(t)dt, (30)

where εn and ε̄n are defined as in (23) and (24), respectively.

Proof
(i). We verify that ŵ(n)(t) ∈ F(DS Pn) by the following two cases.

Case 1. t ∈ [ l−1
2n T, l

2n T
)

for some 1 ≤ l ≤ 2n . Then, for 1 ≤ j ≤ q ,

β j ŵ
(n)(t)−

T∫

t

γ j ŵ
(n)(s)ds

= β j ŵ
(n)(t)−

⎡

⎢⎢⎣

l
2n T∫

t

γ j ŵ
(n)(s)ds +

2n∑

α=l+1

α
2n T∫

α−1
2n T

γ j ŵ
(n)(s)ds

⎤

⎥⎥⎦

= β j

(
w̄

(n)
l +δ2n ρeρ(T−t)

)
−

⎡

⎢⎢⎣

(
l

2n
T−t

)
w̄

(n)
l γ j+γ jδ2n

l
2n T∫

t

ρeρ(T−s)ds

+ T

2n
γ j

2n∑

α=l+1

w̄(n)
α +γ jδ2n

2n∑

α=l+1

α
2n T∫

α−1
2n T

ρeρ(T−s)ds

⎤

⎥⎥⎦

= β j w̄
(n)
l + β jδ2n ρeρ(T−t) −

(
l

2n
T − t

)
γ j w̄

(n)
l −

T

2n
γ j

2n∑

α=l+1

w̄(n)
α

− γ jδ2n

T∫

t

ρeρ(T−s)ds
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= β j w̄
(n)
l −

T

2n
γ j

2n∑

α=l+1

w̄(n)
α + β jδ2n ρeρ(T−t) −

(
l

2n
T − t

)
γ j w̄

(n)
l

− γ jδ2n (eρ(T−t) − 1)

≥ c(n)
jl +

(
ρβ j − γ j

)
δ2n eρ(T−t) −

(
l

2n
T − t

)
γ j w̄

(n)
l + γ jδ2n

≥ c(n)
jl +

(
ρβ j − γ j

)
δ2n − T

2n
γ j w̄

(n)
l + γ jδ2n

≥ c(n)
jl +

(
ρβ j − γ j

)
δ2n

(
since δ2n ≥ T

2n
w̄

(n)
l

)

≥ c(n)
jl = f (n)

j (t).

Case 2. t = T . Then for 1 ≤ j ≤ q ,

β j ŵ
(n)(T )−

T∫

T

γ j ŵ
(n)(s)ds

= β j ŵ
(n)(T ) = β j (w̄

(n)
2n + δ2n ρ)

≥ β j w̄
(n)
2n ≥ c(n)

j2n = f (n)
j (T ).

Hence ŵ(n)(t) ∈ F(DS Pn).
Moreover, we observe that

T∫

0

g(n)(t)ŵ(n)(t)dt

=
2n∑

l=1

b(n)
l

l
2n T∫

l−1
2n T

w̄
(n)
l dt + δ2n

T∫

0

ρeρ(T−t)g(n)(t)dt

=
2n∑

l=1

b(n)
l

T

2n
w̄

(n)
l + δ2n

T∫

0

ρeρ(T−t)g(n)(t)dt

= V (Dn)+ δ2n

T∫

0

ρeρ(T−t)g(n)(t)dt, (31)

which implies 0 ≤
T∫

0
g(n)(t)ŵ(n)(t)dt − V (Dn) ≤ δ2n

T∫

0
ρeρ(T−t)g(t)dt,

since g(n)(t) ≤ g(t).

(ii). Observe that w̃(n)(t) ≥ ŵ(n)(t) ≥ 0 for all t ∈ [0, T ]. For 1 ≤ j ≤ q we have

β j w̃
(n)(t)−

T∫

t

γ j w̃
(n)(s)ds
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= β j ŵ
(n)(t)−

T∫

t

γ j ŵ
(n)(s)ds + εn

⎡

⎣β jρeρ(T−t) −
T∫

t

γ jρeρ(T−s)ds

⎤

⎦

≥ f (n)
j (t)+ εn

[
β jρeρ(T−t) + γ j − γ j e

ρ(T−t)
]

= f (n)
j (t)+ εn

[
(ρβ j − γ j )e

ρ(T−t) + γ j

]

≥ f (n)
j (t)+ εn

[
ρβ j − γ j + γ j

]
(since ρβ j ≥ γ j )

= f (n)
j (t)+ εnρβ j

≥ f (n)
j (t)+ εn (since ρβ j ≥ 1)

≥ f j (t) for all t ∈ [0, T ].
Hence w̃(n)(t) ∈ F(DS P).
Since w̃(n)(t) ≥ ŵ(n)(t) ≥ 0 and g(t) ≥ g(n)(t) ≥ 0, we have

0 ≤
T∫

0

g(t)w̃(n)(t)dt −
T∫

0

g(n)(t)ŵ(n)(t)dt

=
T∫

0

[g(t)− g(n)(t)]ŵ(n)(t)dt + εn

T∫

0

g(t)ρeρ(T−t)dt

≤ ε̄n

T∫

0

ŵ(n)(t)dt + εn

T∫

0

ρeρ(T−t)g(t)dt.

We complete this proof. �
Note that, by (30), we have

V (DS P)−
T∫

0

g(n)(t)ŵ(n)(t)dt

≤
T∫

0

g(t)w̃(n)(t)dt −
T∫

0

g(n)(t)ŵ(n)(t)dt

≤ ε̄n

T∫

0

ŵ(n)(t)dt + εn

T∫

0

g(t)ρeρ(T−t)dt. (32)

Hence, by (22), (29) and (32), we have

0 ≤ V (DS P)− V (Dn)

= V (DS P)−
T∫

0

g(n)(t)ŵ(n)(t)dt +
T∫

0

g(n)(t)ŵ(n)(t)dt − V (Dn)

≤ ε̄n

T∫

0

ŵ(n)(t)dt + εn

T∫

0

ρeρ(T−t)g(t)dt + δ2n

T∫

0

ρeρ(T−t)g(t)dt
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= ε̄n

T∫

0

ŵ(n)(t)dt + (εn + δ2n )

T∫

0

ρeρ(T−t)g(t)dt

= ε̄n

⎡

⎣
2n∑

l=1

T

2n
w̄

(n)
l + δ2n (eρT − 1)

⎤

⎦+ (εn + δ2n )

T∫

0

ρeρ(T−t)g(t)dt

≤ ε̄n

[
2nδ2n + δ2n (eρT − 1)

]
+ (εn + δ2n )

T∫

0

ρeρ(T−t)g(t)dt (by(27))

= ε̄nδ2n (2n + eρT − 1)+ (εn + δ2n )

T∫

0

ρeρ(T−t)g(t)dt. (33)

Note that εn → 0 and ε̄n → 0 as n → ∞, since f j (t) and g(t) are uniformly continuous
on [0, T ]. Accordingly, by (27) and Theorem 1-(ii), δ2n → 0 and

ε̄nδ2n 2n ≤ ε̄nT
L

σ
e

T γ̄
σ → 0 as n→∞.

Thus we have limn→∞ V (Dn) = V (DS P).
Based on the above discussion, we have the following result which provides the estimation

for the error between V (DS P) and V (Dn) and the error between V (S P) and V (Pn).

Theorem 2 Suppose that assumptions (A1) and (A2) hold. Then the sequence {V (Dn)} is
convergent to V (DS P). Moreover, we have

0 ≤ V (DS P)− V (Dn) ≤ εn,

where

εn := ε̄nδ2n (2n + eρT − 1)+ (εn + δ2n )

T∫

0

ρeρ(T−t)g(t)dt, (34)

εn, ε̄n and δ2n are defined as in (23), (24) and (27), respectively.

Note that, by inequality (22) and Theorem 2, we have

V (DS P) ≥ V (S P) ≥ lim
n→∞ V (Dn) = V (DS P).

Therefore, V (DS P) = V (S P) = limn→∞ V (Dn) = limn→∞ V (Pn), and

0 ≤ V (S P)− V (Pn) ≤ εn,

where εn is defined by (34). Moreover, we can establish the estimation for the error bound of
objective values of approximate solutions x̂ (n)(t) and w̃(n)(t) to (SP) and (DSP), respectively.

Theorem 3 Suppose that assumptions (A1) and (A2) hold. Let x̂ (n)(t) and w̃(n)(t) be defined
as in (19) and (28), respectively. Then the error between the optimal value of (SP) and the
objective value of x̂ (n)(t) and the error between the optimal value of (DSP) and the objective
value of w̃(n)(t) are both less than or equal to εn.
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Proof By Lemma 2, x̂ (n)(t) ∈ F(S P). Since f (n)
j (t) ≤ f j (t) for every j and

q∑

j=1

T∫

0

f (n)
j (t)x̂ (n)

j (t)dt =
q∑

j=1

2n∑

l=1

T

2n
c(n)

jl x̄ (n)
jl = V (Pn) = V (Dn),

we have

0 ≤ V (S P)−
q∑

j=1

T∫

0

f j (t)x̂ (n)
j (t)dt

≤ V (S P)−
q∑

j=1

T∫

0

f (n)
j (t)x̂ (n)

j (t)dt

= V (DS P)− V (Dn)

≤ εn,

by Theorem 2.
On the other hand, since V (Dn) ≤ V (DS P), we have

0 ≤
T∫

0

g(t)w̃(n)(t)dt − V (DS P)

≤
T∫

0

g(t)w̃(n)(t)dt − V (Dn)

=
T∫

0

g(t)w̃(n)(t)dt −
T∫

0

g(n)(t)ŵ(n)(t)dt +
T∫

0

g(n)(t)ŵ(n)(t)dt − V (Dn)

≤ ε̄n

T∫

0

ŵ(n)(t)dt + (εn + δ2n )

T∫

0

ρeρ(T−t)g(t)dt (by (29) and (30))

≤ εn (by (33)).

We complete this proof. �

4 Algorithm and convergence of approximate solutions

We summarize the preceding discussions to form the following solution procedure for finding
the approximate solutions of (SP) and (DSP).

Algorithm 2 Let δ be the accuracy of tolerance and an initial number n0 ∈ N be given.

Step 1: Set n← n0.
Step 2: Calculate x̄ (n) and w̄(n) by Algorithm 1. Compute the error bound εn defined as in

(34).
Step 3: If εn ≤ δ, then STOP. By (19) and (28) , construct x̂ (n)(t) and w̃(n)(t) as the

approximate solutions of (SP) and (DSP), respectively.
Otherwise, update n← n + 1, and go to Step 2.
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In what follows, we will demonstrate the convergent properties of the sequences {x̂ (n)(t)}
and {w̃(n)(t)} derived by Algorithm 2.

Let L1[0, T ] be the family of equivalence classes of real-valued Lebesgue measurable
functions on [0, T ] with finite L1 norm. The dual space of the separable Banach space
L1[0, T ] can be identified with L∞[0, T ]. An important property enjoyed by the dual of a
separable Banach space is weak-star sequential compactness for sets bounded in the strong
topology.

By [11, Theorem 4.12.3] and [17, Lemma 2.1], we have the following useful lemma.

Lemma 4 Let λn ∈ L∞[0, T ]. If there exists a constant κ > 0 such that ‖λn‖∞ ≤ κ for
n = 1, 2, . . . . Then

(i) there exist λ ∈ L∞[0, T ] and a subsequence {λnk } such that λnk → λ (weak∗), that is,

T∫

0

λnk (t)h(t)dt →
T∫

0

λ(t)h(t)dt for all h(t) ∈ L1[0, T ];

(ii) we have

λ(t) ≤ lim sup
nk→∞

λnk (t) for almost all t ∈ [0, T ]

and

λ(t) ≥ lim inf
nk→∞

λnk (t) for almost all t ∈ [0, T ].

Remark 3 Note that if λn(t) ≥ 0 for all t ∈ [0, T ] and λn → λ (weak∗), then λ(t) ≥ 0 for
almost all t ∈ [0, T ] by Lemma 4 (ii).

We also note that both the feasible domains of (SP) and (DSP) are in L∞[0, T ], which
is normally regarded as a family of equivalence classes, however, the original formulations
require that the feasible solutions must satisfy the constraints for all t not only for almost
everywhere. In this section, based on our constructed method for approximate solutions of
(SP) and (DSP), we can show that there exist two functions x̂�(t) and w̃�(t), as shown in
Theorem 4, such that they have the same objective value and satisfy the constraints of (SP)

and (DSP), respectively, for all t not only for almost everywhere. Hence, by the weak duality
property shown in Remark (1c), they are optimal solutions of (SP) and (DSP), respectively.

To see this, the following Lemma 5 developed by Tyndall [22, Lemma 5] is needed. Let

FL(S P) := {x(t) = (x1(t), . . . , xq(t))	 | x j (t) ∈ L∞+ [0, T ] (1 ≤ j ≤ q) and

q∑

j=1

⎛

⎝β j x j (t)−
t∫

0

γ j x j (s)ds

⎞

⎠ ≤ g(t) for almost all t ∈ [0, T ]}

and

FL(DS P) := {w(t) | w(t) ∈ L∞+ [0, T ] and β j w(t)−
T∫

t

γ j w(s)ds ≥ f j (t) (1 ≤ j ≤ q)

for almost all t ∈ [0, T ]}.
Lemma 5 Given x(t) = (x1(t), . . . , xq(t))	 ∈ FL(S P) and w(t) ∈ FL(DS P). Then
there exist x̂(t) = (x̂1(t), . . . , x̂q(t))	 ∈ F(S P) and w̃(t) ∈ F(DS P) such that x j (t) =
x̂ j (t) (1 ≤ j ≤ q) and w(t) = w̃(t) for almost all t ∈ [0, T ].
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Let x̂ (n)(t) and w̃(n)(t) be defined as in (19) and (28), respectively. Then we have the
following result.

Theorem 4 Suppose that assumptions (A1) and (A2) hold. Then there exist subsequences
{x̂ (nk )(t)} and {w̃(nk )(t)} such that x̂ (nk ) → x̂� (weak∗) and w̃(nk ) → w̃� (weak∗). More-
over, x̂�(t) and w̃�(t) are the optimal solutions of (SP) and (DSP), respectively.

Proof Note that, by Theorem 1 and Lemma 1, there exists a constant κ > 0 such that
‖x̂ (n)

j ‖∞ < κ and ‖w̃(n)‖∞ < κ for all n and 1 ≤ j ≤ q . By Lemma 4, there exist

x̂ j (t) ∈ L∞[0, T ], w̃(t) ∈ L∞[0, T ] and subsequences {x̂ (nk )
j (t)} and {w̃(nk )(t)} such that

x̂ (nk )
j → x̂ j (weak∗) for all 1 ≤ j ≤ q (35)

and

w̃(nk ) → w̃ (weak∗). (36)

Besides, we have

x̂ j (t) ≤ lim sup
nk→∞

x̂ (nk )
j (t) for almost all t ∈ [0, T ], (37)

and

w̃(t) ≥ lim inf
nk→∞

w̃(nk )(t) for almost all t ∈ [0, T ]. (38)

Since x̂ (nk )(t) ∈ F(S P) and w̃(nk )(t) ∈ F(DS P), we have for all t ∈ [0, T ]

q∑

j=1

⎡

⎣β j x̂ (nk )
j (t)−

t∫

0

γ j x̂ (nk )
j (s)ds

⎤

⎦ ≤ g(t), (39)

x̂ (nk )
j (t) ≥ 0

and for all t ∈ [0, T ]

β j w̃
(nk )(t)−

T∫

t

γ j w̃
(nk )(s)ds ≥ f j (t) (1 ≤ j ≤ q), (40)

w̃(nk )(t) ≥ 0.

Since x̂ (nk )
j (t) ≥ 0 and w̃(nk )(t) ≥ 0, it follows, by (35), (36) and Remark 3, that x̂ j (t) ≥ 0

and w̃(t) ≥ 0 for almost all t ∈ [0, T ]. From (39) and (40), by taking the limit superior and
inferior, we obtain, for almost all t ∈ [0, T ],
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q∑

j=1

β j x̂ j (t) ≤ lim sup
nk→∞

q∑

j=1

β j x̂ (nk )
j (t) (by (37))

≤ lim sup
nk→∞

q∑

j=1

t∫

0

γ j x̂ (nk )
j (s)ds + g(t) (by (39))

=
q∑

j=1

t∫

0

γ j x̂ j (s)ds + g(t) (by (35))

and

β j w̃(t) ≥ lim inf
nk→∞

β j w̃
(nk )(t) (by (38))

≥ lim inf
nk→∞

T∫

t

γ j w̃
(nk )(s)ds + f j (t) (by (40))

=
T∫

t

γ j w̃(s)ds + f j (t) for all j (by (36)).

Hence x̂(t) = (x̂1(t), . . . , x̂q(t))	 ∈ FL(S P) and w̃(t) ∈ FL(DS P). By Lemma 5, there
exist x̂�(t) = (x̂�

1(t), . . . , x̂�
q(t))	 ∈ F(S P) and w̃�(t) ∈ F(DS P) such that x̂�

j (t) = x̂ j (t)
(1 ≤ j ≤ q) and w̃�(t) = w̃(t) for almost all t ∈ [0, T ]. Thus, by (35) and (36), we have

x̂ (nk ) → x̂� (weak∗) and w̃(nk ) → w̃� (weak∗).

Next, we will prove that x̂�(t) and w̃�(t) are the optimal solutions of (SP) and (DSP),
respectively. We observe that

T∫

0

q∑

j=1

f j (t)x̂ (nk )
j (t)dt

=
q∑

j=1

T∫

0

[
f j (t)− f (nk )

j (t)
]

x̂ (nk )
j (t)dt +

q∑

j=1

T∫

0

f j
(nk )(t)x̂ (nk )

j (t)dt

=
q∑

j=1

T∫

0

[
f j (t)− f (nk )

j (t)
]

x̂ (nk )
j (t)dt + V (Pnk ). (by (21))

This implies

T∫

0

q∑

j=1

f j (t)x̂ (nk )
j (t)dt −

q∑

j=1

T∫

0

[
f j (t)− f (nk )

j (t)
]

x̂ (nk )
j (t)dt = V (Pnk ). (41)

Besides, since

T∫

0

g(t)w̃(nk )(t)dt
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=
T∫

0

g(t)ŵ(nk )(t)dt +
T∫

0

g(t)εnk ρeρ(T−t)dt

=
T∫

0

[g(t)− g(nk )(t)]ŵ(nk )(t)dt +
T∫

0

g(nk )(t)ŵ(nk )(t)dt + εnk

T∫

0

g(t)ρeρ(T−t)dt

=
T∫

0

[g(t)− g(nk )(t)]ŵ(nk )(t)dt + V (Dnk )+ δ2nk

T∫

0

ρeρ(T−t)g(n)(t)dt

+ εnk

T∫

0

g(t)ρeρ(T−t)dt,

we have

T∫

0

g(t)w̃(nk )(t)dt −
T∫

0

[g(t)− g(nk )(t)]ŵ(nk )(t)dt

− δ2nk

T∫

0

ρeρ(T−t)g(nk )(t)dt − εnk

T∫

0

g(t)ρeρ(T−t)dt = V (Dnk ). (42)

Hence, by (41) and (42), we obtain

T∫

0

q∑

j=1

f j (t)x̂ (nk )
j (t)dt −

q∑

j=1

T∫

0

[
f j (t)− f (nk )

j (t)
]

x̂ (nk )
j (t)dt

=
T∫

0

g(t)w̃(nk )(t)dt −
T∫

0

[g(t)− g(nk )(t)]ŵ(nk )(t)dt

− δ2nk

T∫

0

ρeρ(T−t)g(nk )(t)dt − εnk

T∫

0

g(t)ρeρ(T−t)dt. (43)

Taking the limit nk → ∞ on both sides of (43), by (35), (36) and Lebesgue’s bounded
convergence theorem, we obtain

q∑

j=1

T∫

0

f j (t)x̂ j (t)dt =
T∫

0

g(t)w̃(t)dt,

and this implies

q∑

j=1

T∫

0

f j (t)x̂�
j (t)dt =

T∫

0

g(t)w̃�(t)dt,

that is, the objective values of x̂�(t) and w̃�(t) are equal. Hence x̂�(t) and w̃�(t) are the
optimal solutions of (SP) and (DSP), respectively. We complete this proof. �
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Let {x̂ (n′)(t)} and {w̃(n′)(t)} be any subsequences of {x̂ (n)(t)} and {w̃(n)(t)}, respectively.
Then, by the proof of Theorem 4, there exist weak∗ convergent subsequences {x̂ (n′k )(t)}
and {w̃(n′k )(t)}. Hence if (SP) and (DSP) have the unique optimal solutions x̂�(t) and w̃�(t),
respectively. Then {x̂ (n′k )(t)} and {w̃(n′k )(t)} are weak∗ convergent to x̂�(t) and w̃�(t), respec-
tively. In other words, all subsequences of {x̂ (n)(t)} and {w̃(n)(t)} have further subsequences
that are weak∗ convergent to x̂�(t) and w̃�(t), respectively. Therefore, we have the following
result.

Theorem 5 Suppose that assumptions (A1) and (A2) hold. If (SP) and (DSP) have the
unique optimal solutions x̂�(t) and w̃�(t), respectively. Then x̂ (n)(t)→ x̂�(t) (weak∗) and
w̃(n)(t)→ w̃�(t) (weak∗) as n→∞, where x̂ (n)(t) and w̃(n)(t) are defined as in (19) and
(28), respectively.

5 Numerical examples

Finally, for illustration purpose, we use two examples to implement the improved method
and to show the quality of the proposed error bound.

Example 1

maximize

1∫

0

ln(t + 1/2)x(t)dt

subject to 2x(t)− 7

t∫

0

x(s)ds ≤ et − 1,∀t ∈ [0, 1]

x(t) ∈ L∞+ [0, 1].

Table 1 Approximate value Vn(S P) and error bound εn for Examples 1 and 2

n Example 1 Example 2

Vn(S P) εn Vn(S P) εn

10 0.3505765 0.0568731 0.8917267 0.2040224

11 0.3518269 0.0285131 0.8958349 0.1025288

12 0.3524547 0.0142757 0.8978995 0.0513945

13 0.3527692 0.0071426 0.8989344 0.0257298

14 0.3529266 0.0035725 0.8994525 0.0128731

15 0.3530054 0.0017866 0.8997118 0.0064386

16 0.3530448 0.0008934 0.8998414 0.0032198

17 0.3530645 0.0004467 0.8999063 0.0016100

18 0.3530743 0.0002234 0.8999387 0.0008050

19 0.3530792 0.0001117 0.8999549 0.0004025

20 0.3530817 0.0000558 0.8999630 0.0002013
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Example 2

maximize

1∫

0

[
(t − 1/2)x1(t)+ (t2 − 1/3)x2(t)

]
dt

subject to x1(t)+ 3x2(t)−
t∫

0

[4x1(s)+ 2x2(s)] ds ≤ t, ∀ t ∈ [0, 1]

x1(t), x2(t) ∈ L∞+ [0, 1].
To illustrate the convergence, we select the partition number n from 10 to 20. Using MATLAB
Version 7.0.1 on a PC for the experiment, the results obtained by running the program which
implement the proposed algorithm are presented in Table 1, where Vn(S P) is the objective
value of the approximate solution x̂ (n)(t) and εn is the proposed error bound defined as in
(34).

From Table 1, one can easily compute a range of the optimal value of (SP) for each n, and
this range will approach to the optimal value of (SP) as n tends to infinite.

Acknowledgments The authors wish to thank the referees whose insightful comments and suggestions
contributed significantly to an improved version of the paper.
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